790
0
2
References
- 1. Kumpulainen, P., Cardó, A. V., Somppi, S., Törnqvist, H., Väätäjä, H., Majaranta, P., Gizatdinova, Y., Hoog Antink, C., Surakka, V., Kujala, M. V., Vainio, O., & Vehkaoja, A. (2021). Dog behaviour classification with movement sensors placed on the harness and the collar. Applied Animal Behaviour Science, 241, 105393. https://doi.org/10.1016/j.applanim.2021.105393
- 2. Vehkaoja, A., Somppi, S., Törnqvist, H., Valldeoriola Cardó, A., Kumpulainen, P., Väätäjä, H., Majaranta, P., Surakka, V., Kujala, M. V., & Vainio, O. (2022). Description of movement sensor dataset for dog behavior classification. Data in Brief, 40, 107822. https://doi.org/10.1016/j.dib.2022.107822
Please wait...
About This Project
Edge machine learning refers to the process of running embedded ML models on site using devices capable of collecting, processing, and recognizing patterns within collections of raw data. This project seeks to train one of such devices (Nicla SenseME) with dog data from the Earth Species' Bio-logger Ethogram Benchmark (BEBE). The board will be used as a smart dog collar, with its ML inferences controlling haptics vibrations in a bracelet wore by a person.
Browse Other Projects on Experiment
Related Projects
How accurate is lyrebird vocal mimicry?
Lyrebirds are some of the world’s best vocal mimics and can accurately copy dozens of species in their Australian...
Can brain training help soldiers with brain injury regain hearing?
Hearing loss is one of the top disabilities facing veterans, with over $1 Billion in disability payments...
Designing new enzymes for sustainable fertilizer
Agriculture relies on phosphorous (P) fertilizer, which generates algae blooms and significant GHG emissions...